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Geometry of the Submanifolds of SEX, .
II. The Generalized Fundamental Equations for the
Hypersubmanifold of SEX,

Kyung Tae Chung' and Jong Woo Lee'

Received February 27, 1989

A connection which is both Einstein and semisymmetric is called an SE connec-
tion, and a generalized n-dimensional Riemannian manifold on which the
differential geometric structure is imposed by g,,, through an SE connection is
called an n-dimensional SE manifold and denoted by SEX,. This paper is a
direct continuation of earlier work. In this paper, we derive the generalized
fundamental equations for the hypersubmanifold of SEX,, including generalized
Gauss formulas, generalized Weingarten equations, and generalized Gauss-
Codazzi equations.

1. PRELIMINARIES

This paper is a direct continuation of Chung et al. (1989), which will
be denoted by I in further considerations in the present paper. It is based
on the results and symbolism of I. Whenever necessary, these results will
be quoted in the text.

Let SEX, be an n-dimensional SE manifold connected by an SE
connection I';,,. Let X, _, be the hypersubmanifold of SEX, connected by
the induced connection I'f; of I'}, on SEX,. In virtue of I, Remark 4.3,
X, _, is also an SE manifold.

Since m =n~1 in our case, there exists only one unit normal N* to
X, _, satisfying [(1.3.5)]

h,sBf N = N,B; =0, h.,sN°N* =1 (1.1)

Therefore, some results obtained in I should be revised. In the following
we list those revised results which are necessary in the present paper.
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The tensor B; satisfies the following identities [(1.3.19)]:
B} =8;— NN’ (1.2a)
BYN,=B.N*=0 (1.2b)

The symmetric and skew-symmetric parts of the induced metric tensor g;;
on X,_, of g,, in SEX,, are given by [(1.3.26)]

h;=hB{B?,  k;=k.,BiB} (1.3)

In virtue of the condition (1.3.28), there exists a unique tensor h™ defined
by h;h™ = 8%, and the tensors h; and h” may be used for raising and/or
lowering indices of the induced tensors on X,_; in the usual manner (I,
Theorem 3.11b). However, the reverse relations of (1.3) may be given by
[(1.3.30)]

h)"_“zhuB;‘BL*’N/\N‘L (1.421)
h*" =hYB} B} + N*N” (1.4b)
Let €; be the generalized coefficients of the second fundamental form

0
of X,_, and D; be the symbolic vector of the generalized covariant derivative

0
with respect to the x’s. Then the vector D;B} in SEX, is normal to X,,_,
and may be given by [(1.3.36), (1.3.37)]

0
where
0
Q,;=—-(D;BY)N, (1.6)

Furthermore, the tensor (;; is the induced tensor on X,_, of the tensor
DgN, in SEX,,. That is [(1.3.38)],

Q,; =(DgN,)B; B} (.7
On the X,_; of a SEX,, the SE identity (I-4.3) can be written as
kaB(QikB_;x _‘ijB?)NB =0 (18)

2. THE GENERALIZED FUNDAMENTAL EQUATIONS FOR THE
HYPERSUBMANIFOLD OF SEX,

This section is devoted to the derivation of the generalized fundamental
equations for the hypermanifold X, , of SEX,,. Here we derive the general-
ized Gauss formulas, Weingarten equations, and Gauss-Codazzi equations
for X,_;.
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Theorem 2.1. On X,,_, of an SEX,, the generalized coefficients of the
second fundamental form {2;; may be given by

4]
Qij:Q,:i‘zk(ayXﬁ)B?BjBNy (21)
4]
where (};; are the coefficients of the second fundamental form with respect

to the Christoffel symbols {,.}.

Proof. Substituting (1.2.12) into (1.7) and making use of (1.1) and (1.7),
our assertion follows in the following way:

Q,*j = [6ﬁNa - Ny({a‘};g}"'2k(a‘yXB)+28[a’yXB])]B?B53

0
= Qij “Zk(aYXB)B:‘xBJ['BNv =
Remark 2.2. 1n virtue of (2.1), we note that the tensor Q;; is symmetric

on X,_, of SEX,, while the generalized coefficients (x),-j is not symmetric
on a general submanifold X,, of X, [(1.3.38)].

Theorem 2.3. (The generalized Gauss formulas for SEX,..) On the X,,_,
of a SEX,, the following relation holds

0
DB} =-Q N“+2k,°X, BB} N.N* (2.2)
Proof. Substituting (2.1) into (1.5), we have (2.2). R

In order to prove the generalized Weingarten equations, we need the
induced tensors M; of DgN* and M; of (DzN*)N,,, respectively, on X,,_,
of SEX,,:

M} =(DyN*)B,B? (2.3a)
M, =(DzN*)N,Bf = —(D,N,)N°B? (2.3b)

In the following three theorems, we derive useful representations of the
induced tensors M; and M,.

Theorem 2.3. In an SEX, the system of equations (1.2.8b) may be
given by

D, g\ = 480X, (2.4)

which can be split into '
Dk, =2(X18u)e — M X.) (2.5a)
Dk, =2({ X[ .81 — kruXo) (2.5b)

Furthermore, in an SEX,, we also have
D b = =20 R (X 080 — hapX.) (2.6)
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Proof. Substitution of (1.2.9) into (1.2.8b) gives (2.4). Equations (2.5a)
and (2.5b) follows from (2.4) and

th/\/.l. = Dwg()\u.): Dwk)\/.l, = wg[)\,u.]

On the other hand, if we differentiate both sides of (1.2.4) with respect to
y” and substitute (2.5a), we get

hy D " = —h"Dh,, = =20 (X180 — PruXe)

The relation (2.6) follows immediately by multiplying by h** on both sides
of the above equation. W

Theorem 2.4. The induced tensor M; is given by
Mi=-2h"X ks, N*B%BY — 8 X,N*+h"™Q,,, (2.7)
Proof. Equation (2.3a) gives
Mi=(D4(h*'N,))B.,B?
= (Dgh*")N, B, B® + h*"(D;N,) B', B? (2.8)
Substituting (2.6) into (2.8) and making use of (1.3), (I-3.18), (1.1), and
(1.7), we have (2.7). &
Theorem 2.5. The induced vector M; is given by
M; = X,B} — X(uks),N*N*B} (2.9)

Proof. Generalized covariant differentiation of both sides of the last
relation of (1.1) with respect to x’ gives

(Dyhog) N*NPB) +2h,s(D,N*)N®B} =0 (2.10)

Our representation (2.9) immediately follows by substituting (2.5a) and
(2.3b) into (2.10) and making use of (1.1). H

Now, we are ready to prove the following generalized Weingarten
equations.

Theorem 2.6a. (The first representation of the generalized Weingarten
equations in SEX,,.) On the X, _, of an SEX,, the following relation holds:

0 .
D,N® =X kg,,(N*N® =2n**YN°B} +h"™Q,,;B}
- XzNPB;+ X;N*B? (2.11)
Proof. Substituting (1.2a) for & into
)
D,N® = (DzN*)Bf = (§DyN?)N*¥
and making use of (2.3a), (2.3b), and (1.3.15), we have

0 .
D,N* = M!B? + M,N® (2.12)
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Our assertion (2.11) immediately follows by substituting (2.7) and (2.9) into
(2.12) and making use of (1.4b). B

Theorem 2.6b. (The second representation of the generalized
Weingarten equations in SEX,.) On the X, _; of an SEX,, the following
relation holds:

0 .
DN, = Q,B. + X sk.,,N,N°N°B? - X;N, B} (2.13)

Proof. Substituting (2.5a) and (2.11) into

0 0 0
DN, = D;(h,sN®) = h,zsD;N® +(D,h,s) N*B}
and making use of (1.1), we have (2.13). W

In order to derive the generalized Gauss-Codazzi equations, we need
the following curvature tensors of SEX, and its hypersubmanifold X, _;:

Ron” =200 T ey t T apu T i) (2.14)
Rip™ = 231, [y + T T fiin) (2.15)

Theorem 2.7. (The generalized Gauss-Codazzi equations in SEX,,.) On
the X,,_; of an SEX,, the curvature tensors defined by (2.14) and (2.15) are
involved in the following identities:

R,-jkp = RﬁysaBﬁBiB}B? + Z(Qm[jﬂmﬁ]hmpB:
+X,NPQ, 6%+ kS XN QB BL) (2.16)

4]
2D; 1= Ry *NoBE BY Bf +2(Xp Qi B +20,0. X)) (2.17)
Proof. In virtue of (1.5), (2.14), (2.15), and

0
DBy =B;+I'3,Bf B -TEB}

we have

0 0 0 0 0 0
2D, Dy Bf =2[3y (D BY) = I'{ay( D BY) = T Dy B1) + T ( DBy BI

=—R,,;" B® B} Bi+ R,;"B%+4Q, ;X ;N°® (2.18)

eyB

where use of the relation

S =281, Xy
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has been made in the above lengthy calculation. On the other hand, the
relations (1.5) and (2.11) give

[0 0 0 0
DDy BY = =2( D) N® = 2Q;,Dig N*®

0
= —=2(DyQyp+ XpQup By N
= 2Xkg), N NPB[iQysN* + 20, Qs ™ B
+2X, NP B+ 8h P X Ky N*Qy B (2.192)

In virtue of the SE identity (1.8) and the symmetry of (};;, the second and
the fifth terms of the last equation of (2.19a) are

Second Term =0 (2.19b)
Fifth Term = -2X.k *N*Q,;B};+2X °k.,Q B},
=2k,*XgN* Q. B} (2.19¢)
Comparing (2.18) and (2.19), one finally gets

0
Rkj,-m B:‘n = ngﬁa B?BJ‘YB;SC+2(_D[;€Q),|]]+ XﬁQ,[kBﬁ"l‘zﬂl[kX}])Na
+2(Q g Quh ™ By + XpNP QB+ kS X NP QB (2.20)

Making use of (1.3.16), the identity (2.16) follows by multiplying by B% on
both sides of (2.20) and interchanging the indices i and k. On the other
hand, multiplying by N, on both sides of (2.20) and using the SE identity
(1.8), we have (2.17). &
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